Sensor Data Fusion for Context-Aware Computing Using Dempster-Shafer Theory
نویسندگان
چکیده
Towards having computers understand human users context information, this dissertation proposes a systematic context-sensing implementation methodology that can easily combine sensor outputs with subjective judgments. The feasibility of this idea is demonstrated via a meeting-participants focus-of-attention analysis case study with several simulated sensors using prerecorded experimental data and artificially generated sensor outputs distributed over a LAN network. The methodology advocates a top-down approach: (1) For a given application, a context information structure is defined; all lower-level sensor fusion is done locally. (2) Using the context information architecture as a guide, a context sensing system with layered and modularized structure is developed using the Georgia Tech Context Toolkit system, enhanced with sensor fusion modules, as its building-blocks. (3) Higher-level context outputs are combined through sensor fusion mediator widgets, and the results populate the context database. The key contribution of this thesis is introducing the Dempster-Shafer theory of evidence as a generalizable sensor fusion solution to overcome the typical contextsensing difficulties, wherein some of the available information items are subjective, sensor observations probability (objective chance) distribution is not known accurately, and the sensor set is dynamic in content and configuration. In the sensor fusion implementation, this method is further extended in two directions: (1) weight factors are introduced to adjust each sensor's voting influence, thus providing an objective sensor performance justification; and (2) when the ground truth becomes available, it is used to dynamically adjust the sensors' voting weights. The effectiveness of the improved Dempster-Shafer method is demonstrated with both the prerecorded experimental data and the simulated data.
منابع مشابه
Sensor Fusion Using Dempster-Shafer Theory
Context-sensing for context-aware HCI challenges the traditional sensor fusion methods with dynamic sensor configuration and measurement requirements commensurate with human perception. The Dempster-Shafer theory of evidence has uncertainty management and inference mechanisms analogous to our human reasoning process. Our Sensor Fusion for Contextaware Computing Project aims to build a generaliz...
متن کاملDesigning a Home Security System using Sensor Data Fusion with DST and DSMT Methods
Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملA Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003